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Abstract—Demand response (DR) is becoming an increasingly 

important part of power grid planning and operation.  The 
advent of the Smart Grid, which mandates its use, further 
motivates selection and development of suitable software 
protocols to enable DR functionality.  The OpenADR protocol 
has been developed and is being standardized to serve this goal.  
We believe that the development of a distributable, open source 
implementation of OpenADR will benefit this effort and motivate 
critical evaluation of its capabilities, by the wider community, for 
providing wide-scale DR services. 
 

Index Terms—OpenADR, open source, demand response. 
 

I. INTRODUCTION 
hile demand response systems have been an active area 
of interest and research over the past decade, the Smart 

Grid initiative, which mandates some form of demand 
response load shedding [1], has spurred increased interest in 
this field.  One of the goals of the Smart Grid, namely, the 
achievement of a common, unified and standards-driven grid 
communications architecture, has motivated a closer 
examination of software frameworks and protocols capable of 
supporting wide-scale demand response functionality.   One of 
the protocols undergoing evaluation is OpenADR.   
 
Much of the current research in demand response is focused 
on relatively isolated pilot implementations. However, the 
prospect of a common, grid-wide demand response protocol 
requires the shared focus of a much larger and coordinated 
community of experts.  The open source software movement  
[2] has succeeded in creating and coordinating such 
“communities of interest” around efforts of similar scale (e.g. 
the Linux OS).  In looking at the level of analysis and effort 
required to implement a truly Smart Grid–capable demand 
response protocol, the open source community model can 
provide both the level of skills and breadth of experience 
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needed to guide a new protocol into the wider grid 
community.  We have attempted to seed this effort by 
producing an open source version of the OpenADR demand 
response protocol and are in the process of packaging and 
releasing it to the research community.  Our goal is to provide 
a common code base that can drive both innovative 
experiments and formal protocol verification activities and, 
ultimately facilitate ubiquitous demand response capabilities 
within the emerging Smart Grid.  
 

II. DEMAND RESPONSE ARCHITECTURES 
Early demand response efforts were primarily manual in 
nature.  Requests to reduce demand were typically made a day 
or more in advance and communicated to the end user through 
fax or telephone messaging.  Once received, local energy 
management system set points were altered to reduce 
consumption in accordance with the communicated request 
and contractual requirements.  There was little automation in 
either the generation/distribution of the request or in effecting 
an appropriate response. 
 
In the 1990s, the growing availability of inexpensive 
computing equipment and wide scale data communications 
infrastructure allowed the development of systems capable of 
automating both the communications and response aspects of 
DR activities.  From these experiments, there emerged a 
conceptual view of demand response as a power grid system 
behavior that could be operationally used to alter energy 
demand levels in both an automated and time-bounded manner 
– thus the term “automated demand response or ADR.  As 
demand for energy continued to approach existing generation 
capacity, the importance of ADR as a key methodology for 
matching energy generation capacity and demand also 
increased.  Figure 1 illustrates the system load “shaping” 
behavior measured in a single building [3].  
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Figure 1 – Automated DR Load Shaping. 

III. OPENADR ARCHITECTURE 
OpenADR [4] (Open Automated Demand Response) was 
developed at the Demand Response Research Center [5] 
(DRRC) as part of an ongoing effort to help building and 
facilities managers implement automated demand response 
within their facilities.  It was designed to allow buildings to 
invoke pre-planned demand shedding strategies quickly and 
automatically when requested by utility operations.  By 
integrating automated building responses into everyday grid 
operations, it also enabled utilities to promote commercial and 
industrial participation in new power pricing programs that 
leverage automated demand response behavior from end users. 
 

 
Figure 2 – OpenADR Architecure. 

 
At its core, the OpenADR architecture defines a data model 
for energy cost and reliability that is common among and 
relevant to an energy provider and its customers. By providing 
a common data model among these parties and defining the 
semantics for accessing and changing elements within this 
model, energy providers and consumers can efficiently 
exchange demand response requests based on both price and 
grid reliability criteria.   
 
One particular feature that differentiates OpenADR from other 
automated DR architectures is that utility DR requests contain 

no information about specific devices or operations that 
should be curtailed or stopped.  OpenADR only conveys the 
utility’s request for demand reduction to the customer - either 
by direct request or through distribution of increased energy 
cost rate schedules that will, in turn, motivate load shedding 
and reduced demand.  Specific consumer-side responses to 
these requests are formulated by and completely under control 
of the end user.  The overall result is that energy consumers 
can respond to utility DR requests in ways that are most 
effective and convenient for each local.  In addition, the 
OpenADR messaging protocol has provisions for customers to 
individually respond to DR requests with an “opt out” signal – 
further increasing flexibility permitted for customer response.  
The end result is a system that promotes automated responses 
to utility DR requests while maximizing the local flexibility 
exercised in responding to those requests.   
 
Take, for example, the case where a utility must shed load to 
maintain grid stability.  It knows that one or more pre-
registered clients are participating in a particular DR 
“program” and that they have agreed to respond, within 
certain pre-arranged limits, to utility requests to shed load over 
a given time interval.  The magnitude of the expected load 
shed and the speed at which it can be affected are fully 
specified by the specific DR “program” to which a client has 
subscribed.  The utility issues a request (“DR event”) to 
participating clients to shed load and receives verification that 
that the request has been received.  Clients then begin 
shedding load in keeping with pre-agreed criteria.  Failure to 
perform as agreed, as indicated by interval-recording revenue 
meter data, will result in penalties at a later date when utility 
rate charges are reconciled.  An OpenADR client may 
optionally indicate that it will not participate in a DR program 
(“opt out”) for some period of time.  While this typically does 
not override a client’s obligations to comply with DR program 
requests,  such a response may ease the complexity of utility 
dispatch operations. 
 
A second DR use case is one in which utilities modify energy 
costs in an attempt to motivate reduction in demand.  In this 
case, an OpenADR server can issue “price events” that 
describe elevated energy costs over a particular time interval.  
Participating clients can respond to these requests by shedding 
load, according to the communicated schedule, and reduce 
their energy costs.  Conversely, some clients may decide to 
accept the “opportunity costs” of higher energy rates because 
local conditions require energy consumption to continue at 
normal rates. Since utility back office operations are 
ultimately responsible for local “time of use” readout and 
revenue settlement, local DR behavior can remain relatively 
independent of utility DR requests while accurate contractual 
or revenue obligations can be insured. 
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Figure 3 – Generic Roles, Event‐based Use Case. 

 
In practice, OpenADR is implemented as a client/server 
system that highly leverages design elements found in similar 
successful commercial Internet designs.  It is readily adapted 
to widely-available Internet communications infrastructures 
and, due to its hierarchical design can mirror the layered 
organizations typically found in energy distribution systems – 
namely utilities, aggregators, and end users.  The following 
diagram depicts typical OpenADR elements.  (note: DRAS 
acronym commonly used for Demand Response Automation 
Server).  
 
Clearly, the exchange of model data element between client 
and server is critical to this design.  In order to effectively 
share model data between participating entities, OpenADR 
defines an extensive set of XML (eXtensible Markup 
Language [6]) formatted messages that describe model 
element identifiers and their values.  These XML-formatted 
messages are used to communicate current and future energy 
pricing, time of use pricing schedules and as well as explicit 
demand reduction requests between the OpenADR Demand 
Response Automation Server (DRAS) and its clients.   
 
<?xml version="1.0" encoding="UTF-8" ?> 
<p:eventStateprogramName="LBNL" eventModNumber="0" 
    eventIdentifier="LBNL-102141" drasClientID="akua1" 
    eventStateID="0" schemaVersion="1.0" drasName="DRAS 1.0" 
    testEvent="false" offLine="false" xmlns:p="urn:EventState" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation= 
        "urn:EventStatehttp://openadr.lbl.gov/src/1/EventState.xsd"> 
    <p:simpleDRModeData> 
        <p:EventStatus>ACTIVE</p:EventStatus> 
        <p:OperationModeValue>MODERATE</p:OperationModeValue> 
        <p:currentTime>125</p:currentTime> 
        <p:operationModeSchedule> 
        <p:modeSlot> 
            <p:OperationModeValue>MODERATE</p:OperationModeValue> 
            <p:modeTimeSlot>120</p:modeTimeSlot> 
        </p:modeSlot> 
    </p:operationModeSchedule> 
    </p:simpleDRModeData> 
    <p:drEventData> 
        <p:notificationTime>2009-03-26T10:25:00.0</p:notificationTime> 
        <p:startTime>2009-03-26T10:27:00.0</p:startTime> 
        <p:endTime>2009-03-26T10:30:00.0</p:endTime> 
    </p:drEventData> 
 
Figure 4 – Example OpenADR XML‐formatted Event. 

 

When this common data model is widely adopted by energy 
consumers, OpenADR provides the following benefits: 
 

• Simplify and reduce DR-related costs by use of 
standardized messaging formats. 

• Promote interoperability between utility servers and 
multi vendor clients. 

• Increase customer participation and reduce operating 
cost associated with manual responses to DR requests 
through use of automation. 

• Allow energy consumers to customize local response 
to utility DR requests. 

• By promoting standardized architecture and message 
formatting, encourage wide-scale integration and 
embedding of DR capabilities into consumer devices. 

IV. PLACING OPENADR IN TO THE SMART GRID 
ENVIRONMENT 

The cornerstone of the Smart Grid is the requirement that data 
and control communications essentially “follow” the flow of 
power from the generation facility, through the distribution 
automation infrastructure, into the end user facility and, 
ultimately to the load itself.  While much of the current power 
grid head end is already extensively interconnected, 
substantial effort, within the Smart Grid initiative, is being 
focused on “securitizing” these grid communications against 
cyber attacks. 
 
However, at the other end of the grid – that of the power 
consumer, there is little (i.e. pre-Smart Grid) communications 
infrastructure.   At present, new meter communications 
systems (Advanced Metering Infrastructure, or AMI [7]) are 
being installed across the US in order to extend grid 
communications to the residential meter – the traditional 
power grid/consumer  demarcation boundary.  Furthermore, 
these new AMI systems interconnect, within the facility, with 
yet another new data network – the Home Area Network 
(HAN [8]) – which is intended to be the utility-connected 
control network for major appliances and sub systems within a 
facility or residence. While a detailed evaluation of these new 
Smart Grid communications networks is beyond the scope of 
the paper, it is worth discussing their potential impact on DR 
architectures and implementation.   
 
All DR architectures require some communications 
mechanism for signaling load shedding requests – either 
directly or, by implication, through notification of increased 
rate schedules.  While the communications path described 
above does constitute a way to communicate between utilities 
and their customers, it is just now being deployed widely 
within the US and, operationally, is still in a formative stage.  
AMI systems and interfaces are proprietary by design and vary 
across the entire Smart Grid topology – occasionally, different 
AMI systems serve customers within the same city.  
Furthermore, the potential interfaces through which non AMI 
messages can be injected into these systems vary widely or are 
non-existent- across AMI vendors.  The result is that, at this 
point in time, a DR standard that targets wide-scale 
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deployment cannot effectively reference details of these 
communications channels.   
 
As a result, successful DR protocols and standards need to 
avoid explicit references to network transport layers and 
should be capable of readily adapting to the communications 
channels available in a given local.  The most prevalent of 
these channels, with market penetration of between 70% and 
80% [9] is the Internet, which is typically accessed  through 
either broadband or DSL technologies. The OpenADR V1.0 
specification, while making no explicit demands on 
underlying communications layers, has been developed, tested 
and successfully deployed using these standard IP (e.g. 
Internet) protocols.  In terms of advancing DR research in 
anticipation of its wide-scale deployment, we believe that use 
of existing Internet communications standards provides the 
best foundation for large pilot deployments and ongoing 
research.  Furthermore, by focusing attention at the application 
– and not the communications – level, we ensure the required  
level of adaptability needed for future ubiquitous deployment 
within the Smart Grid. 
 
 

V. RELATIONSHIP BETWEEN OPENADR AND SMART ENERGY 
PROFILE (SEP) 

As mentioned earlier, the desire to control or modify energy 
loads has led to a number of messaging systems, each with 
their own formats and semantics.   Currently, two 
specifications, OpenADR and SEP (Smart Energy Profile) 2.0 
[10], appear most frequently in discussions about wide scale, 
automated DR architectures.  Both of these are intended to 
complete the standards process and be suitable  candidates for 
communicating DR requests between utilities and consumers.   
 
Both OpenADR and SEP 2.0 are considered to be application-
level protocols and, as such, are focused on providing services 
and functions that are relevant within their specific domain or 
application area.  They typically specify how to encode high 
level functions, e.g. “change thermostat set point” or “here is 
tomorrow’s energy price schedule”, into specific messages 
and codify all legal responses to such messages during normal 
operations.  With few exceptions, they are not concerned 
about the actual mechanics of message transmission and 
reception (i.e. message transport) – those responsibilities are 
left to lower level communications protocols (e.g. IP).  At 
their heart, application protocols are focused on describing the 
behaviors of each communicating component.  Each as its 
origins and strengths in a particular part of power grid 
operations – as described below: 
 
OpenADR grew, in part, out of early utility-level DR 
programs that communicated price and reliability information 
to buildings and end users thus allowing them to reduce 
demand on a voluntary basis.  One of the key innovations of 
OpenADR was the creation and communication of a 
standardized data representation (using XML) of these pricing 
and supply conditions that would allow end user control 
systems to respond in an automated and timely way.  As an 

applications level protocol, OpenADR leveraged existing 
Internet communications infrastructure. And, as the reach and 
reliability of the Internet grew, so did its ability to interact 
with power consuming clients over a wide geographic ares.  
Like earlier manual DR programs, end users still defined the 
manner in which they responded to these signals, but the 
OpenADR protocol allowed truly automated response to DR 
signals. 
 
SEP 2.0 has taken a different evolutionary path.  It has grown 
out of an effort to create a standardized application layer for 
use with low-power, 802.15.4 [11] radio equipped hardware 
platforms that supported the Zigbee software network 
protocol.  The Zigbee Alliance has energetically specified both 
a software and hardware “ecosphere” that supports 
applications in a number of key areas (e.g. device-level energy 
management) using computing platforms that were known to 
be sufficiently inexpensive to make their ubiquitous inclusion 
in home appliances both attractive and certain.  Since the 
primary function of automation within the home has always 
been the actual control of devices, the software model found in 
the energy application specification (SEP 1.0) naturally 
focused explicitly on the control of devices.  With SEP’s 
evolution to SEP 2.0 through the adoption of the IP protocol 
stack, it became possible for this programming model to 
function in wide area networks as well.  
 
At this point in time, we feel these two DR-capable models 
complement each other.  OpenADR, implemented primarily 
on web-base transport infrastructures, is a good fit at the 
enterprise end of distribution grid operations.  And, SEP 2.0, 
growing out of the cost effective device control domain, is a 
good fit within the home-based, device control world.  While 
technical advancements in both the micro-controller and 
networking domains can allow each of these protocols to 
extend across the entire utility to customer to device spectrum, 
we feel each has a natural domain within which they are best 
suited to meet application needs. 

VI. MOTIVATION – DOES OPEN SOURCE MAKE SENSE? 
The open source development model has been widely adopted 
within the Internet community and the larger software 
development world.  Although the rules governing behavior 
within this community take on varying forms, the general 
precept of “shared responsibility for development of quality 
software” is well accepted and ubiquitous across both the 
academic and commercial domain.  While some companies 
initially viewed open source efforts as eroding the value 
invested in proprietary software, over time it has been shown 
that, where individual applications share common 
functionality, open source programs can provide code that is 
more correct and reliable than proprietary implementations.  
Individual and corporate justification for actively supporting 
open source projects vary from creating an increased sense of 
professional “community” to allowing start-up companies to 
focus on value-added portions of their product while 
leveraging common open source-supported web frameworks.  
Regardless of individual motivations, there can be little 
argument about the success and usefulness of open source 
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projects such as Linux and the Apache Foundation’s Tomcat 
web application server in the commercial world. 
 
However, while many facets of the current power grid 
resemble the Internet, they are, in fact, very different software 
environments and the question “does open source have a place 
in Smart Grid” is worth addressing.   The software 
infrastructure of the power grid is purpose-built and, in 
general, a very conservative programming environment.  
Overall power grid stability and safety are paramount and 
inadvertent or intentional destruction of key system elements 
can have catastrophic monetary consequences.  Thus, within 
the power generation and distribution automation portion of 
the grid, the advantages of the open source model may not be 
justified.   
 
Some areas, such as utility back office operations, are 
essentially IT environments, and freely use open source 
software solutions where appropriate.  These business support 
services, which are technically still part of the greater Smart 
Grid model, may find open source tools attractive for cost and 
reliability reasons.  However, since they exist outside of the 
utilities operations domain, they have little impact on the grid 
per se.  
 
So, what is the nature of the open source opportunity in the 
DR world?  It can be argued that, with advancement of the 
Smart Grid initiative, some degree of automated demand 
response will be required by all operating utilities within the 
US and these DR systems will reach most, if not all, of their 
energy customers.  Successful DR systems of this scale will 
use or, at a minimum, leverage proven Internet-based tools 
capable of scaling to service these large markets.  This is 
precisely the environment in which open source tools have 
already proven their value.  Furthermore, since the OpenADR 
architecture has evolved within and proven its capabilities in 
the Internet-mediated environment, it will very likely benefit 
from the attention of a developer community intent on 
providing high quality, reliable web-based services.  
Therefore, we believe there is both research and, potentially, 
commercial value in producing an open source OpenADR 
implementation and exploring and analyzing this protocol 
within the wider open source and DR communities. 

 

VII. OPEN SOURCE OPENADR GOALS 
The open source OpenADR project has four primary goals.  
The first of these is to provide a vehicle for educating 
researchers, utilities and vendors about the OpenADR 
protocol.   Much of the previous work in the DR domain has 
focused on direct control of customer loads.  As noted above, 
this DR methodology is rooted in a centralized control model 
that is fundamentally different than OpenADR.  Past 
discussions about the suitability of OpenADR for wide-scale 
deployment have made it clear that some confusion about the 
basic OpenADR behavioral model still remains.  We believe 
that, by distributing a simple, research-quality OpenADR 
server and client demonstration program, we will address 
these misunderstandings through direct and meaningful 

demonstration.  Furthermore, by giving the wider research 
community access to a simple, OpenADR software 
environment, we will promote widespread experimentation by 
potential OpenADR implementers. 
 
The second goal is to provide a basic software “core” that is 
capable of supporting simple OpenADR demonstrations and 
pilots with a minimum amount of software development.  As 
noted above, our intention is to produce a “research-grade” 
OpenADR server and client.  In other words, there is no 
intention to produce, at least at this stage of development, an  
OpenADR server that is suitable for continuous, commercial 
applications.  However, given the state of development in the 
DR domain, there are research areas that will clearly benefit 
from data gained through focused pilot programs.  One of our 
goals is to facilitate these research activities by providing a 
simple framework capable of being altered to meet immediate 
research goals. 
 
Thirdly, we want to produce an independent OpenADR 
implementation code base that is suitable for future protocol 
conformance testing activities.  As noted above, OpenADR is 
currently a published, publicly available specification 
(OpenADR V1.0) and is undergoing formal standardization 
process within both the OASIS [12]  and UCA [13] standards 
organizations.  Looking forward to the successful completion 
of these efforts, the OpenADR community will require a 
compliance and interoperability testing framework for 
verification of new, third party OpenADR implementations.  
While we cannot foresee the exact outcome of these 
standardization efforts, we feel this project provided an 
opportunity to initiate the design of such a package.   
 
And, lastly, we want to produce a modular OpenADR 
implementation that lends itself to integration into a variety of 
smart grid and energy market simulation frameworks.  While 
utilities and independent system operators (ISOs) have used 
simulation programs to evaluate physical power distribution 
designs, few such frameworks are available to evaluate large, 
metropolitan-scale aggregations of energy consumers that are 
responding to energy price and reliability signals.  Discussions 
with several utilities indicated that the usefulness of such 
simulation frameworks would be greatly enhanced if they 
could include modeling of auto DR signaling and response 
behaviors.  Our last goal is to insure that the OpenADR code 
base produced within this project is sufficiently modular and 
granular to allow its integration into software frameworks that 
are substantially different, architecturally, from the 
“application server” environment required to satisfy our other 
goals. 
 

VIII. IMPLEMENTATION SPECIFICS 
As noted above, OpenADR is essentially a client/server 
architecture that should easily integrate into the existing 
Internet Web Service environment.  We chose to implement 
both the server and client portion of this project in the Java 
language.  While other choices were available to us (e.g. 
C++), programming in the Java language enhanced the 



 6 

number of potential open source tools available for use in 
addressing other aspects of the implementation.  The 
prevalence of Java in web-based software packages and the 
availability of language specific tools for creating, 
manipulating and binding XML documents to program 
elements argues strongly for its use on the server side.  On the 
client side, Java environments are readily available in PC-
based systems and in many embedded Linux environments.  
While we have seen a number of minimal OpenADR clients 
programmed in either C or C++, we decided that a reference 
Java client implementation would be of great benefit to users.  
 
The decision to use Java as the primary implementation 
language prompts the question – what is the appropriate 
execution environment for a research-grade OpenADR 
software implementation?  Given recommendations of the 
present OpenADR V1.0 specification, server functions must, 
at a minimum, respond to standard Web Service requests (i.e. 
REST [14]) posted by OpenADR clients.  While it is possible 
to compose and structure a stand-alone Java program that will 
accept http connection requests, interpret Web Service-
formatted messages, and respond appropriately, open source 
frameworks capable of supporting such transactions are 
widely available and well supported.  Java application servers, 
such as Apache Tomcat [15], Jetty 16] and JBoss 17], are 
widely used in both academic and commercial contexts and, 
most importantly, have large followings in the software 
development community.  While we considered basing our 
implantation on the JBoss application environment, we 
decided that, in keeping with our original set of goals,   the 
Apache Tomcat application server was the most appropriate 
open source web framework for the current software package.  
It is readily available, simple to install on both Windows and 
Linux environments and is generally well known in the web 
developer community. 
 
Information about participating clients, utility program rate 
programs and applicable schedules is maintained in 
OpenADR’s database.  Regardless of the object oriented 
nature of our implementation, traditional relational databases 
were considered most appropriate for this role.  However, 
differences between popular relational databases prompted 
lengthy discussions about which particular database would 
prove most useful.  We considered MySQL [18], Oracle [19] 
and Postgres [20] as database candidates.  Since, in keeping 
with the open source tradition, we wanted to only incorporate 
freely obtainable software components, we limited the Oracle 
implementation to the freely distributed Oracle Express 
package. All candidates implemented standard SQL[21] query 
languages and shared features typically found in modern 
databases – namely customized database table trigger 
functions.  However, each used different commands for initial 
database configuration, table creation and user privilege 
management.  Discussions with back office staff from several 
utilities and further discussions with vendors serving the 
utility marketplace led us to ultimately chose Oracle Express. 
This decision was based on the communities overall 
familiarity with the Oracle command interface and by the 
percieved ease of integration – even if only for pilot 

demonstration purposes – with existing utility operations and 
dispatch systems.  
 

IX. DISCUSSION 

A. Security 
The role of security in OpenADR has several aspects.  In 
general, any Internet application that exchanges sensitive user 
information now receives increased scrutiny from designers 
viz. implementation of security features.  Since OpenADR 
transactions involve no direct funds exchange, it could be 
considered a low security risk application.  However, 
OpenADR messages do convey cost saving opportunities and 
malicious activities that manipulate the contents of these 
messages could create “opportunity costs” that, in effect, turn 
into very real utility bill differentials that must be reconciled.  
Therefore, OpenADR V1.0 has specified that, at a minimum, 
client/server messaging should follow best commercial web 
practices for security.  In practice, commercial OpenADR 
DRAS systems implement Transport Layer Security (TLS 
[22]) for all critical message passing operations.  It should be 
noted that the security measures described here exist as layers, 
recommended by, but not implemented as part of, OpenADR.  
Therefore, in designing an open source version of OpenADR, 
we have not added an explicit security layer as the details of 
this layer are outside the scope of the specification.  In future 
releases, we will add layered security to promote use of this 
package in demonstrations with modest security requirements.  
These security layers will not explicitly interact with the core 
OpenADR code base.   
 
It should also be noted that, for at least two of our motivating 
guidelines, explicit security layers will prove counter- 
productive. In particular, when used as part of a large 
simulation framework, the presence of a security fuctions as 
an explicit part of the OpenADR implementation would add 
unnecessary complexity and computational overhead.  
Furthermore, when using elements of this codebase as part of 
certification suite, the presence of security features would be a 
distraction for use case testing. Since OpenADR is a DR 
messaging content specification, it contains no explicit 
security behaviors.  Therefore, while security issues play a 
critical role in overall design of a DR system, these issues 
have not role in proving the correctness of OpenADR message 
content. 

B. Utility Operator Interface 
The OpenADR specification focuses primarily on the interface 
between the utility and the consumer.  Detailed use case 
descriptions and messaging examples delineate exchanges 
between these two entities.  However, OpenADR does not 
proscribe or define the process by which a utility decides to 
declare DR events or the mechanism through which a utility 
operator instructs the OpenADR messaging system to initiate 
distribution of such events to participating clients.  In practice, 
these details are dictated by utility policies and, with respect to 
the actual mechanism used to interact with the utilities DRAS, 
ddictated by the utility’s IT environment. 
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Therefore, our open source implementation provides a simple 
interface through which an external operator can cause the 
server to evaluate its present state and, if required, formulate 
and emit events to clients as appropriate.  Rather than include 
all the required utility state information in this interface, we 
assume that such information will already be present in the 
OpenADR server database prior to invoking event processing.  
In practice, this design closely maps onto typical utility and 
ISO (Independent System Operator) architectures.  Rather 
than providing a very rich – and very specific – web service 
interface as part of event scheduling, utility-specific sub-
systems continually update OpenADR tables with current DR 
targets and potential price schedule changes.  On recognition 
of a need for system-wide demand reduction, an operator 
requests that an event be created and distributed through a 
simple server interaction.  

X. CONCLUSION 
The increased interest in demand response systems and the 
growing influence of the Smart Grid initiative has lead to the 
requirement for national standards for demand response 
protocols.  Given the potential scale in which such standard 
protocols will operate, parallels to open source software 
efforts of similar scale are apparent.  We have specifically 
developed an open source implementation of the OpenADR 
protocol with the purpose of facilitating the analysis and 
research of this protocol within the larger research and 
development community.  The current effort has already 
promoted interactions with a number of independent 
OpenADR developers and we anticipate wider collaborations 
based on wider use of this open source codebase. 
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